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ABSTRACT
High-performance scientific workflows utilize supercomputers, sci-
entific instruments, and large storage systems. Their executions
require fast setup of a small number of dedicated network connec-
tions across the geographically distributed facility sites. We present
Software-Defined Network (SDN) solutions consisting of site dae-
mons that use dpctl, Floodlight, ONOS, or OpenDaylight controllers
to set up these connections. The development of these SDN solu-
tions could be quite disruptive to the infrastructure, while requiring
a close coordination among multiple sites; in addition, the large
number of possible controller and device combinations to investi-
gate could make the infrastructure unavailable to regular users for
extended periods of time. In response, we develop a Virtual Science
Network Environment (VSNE) using virtual machines, Mininet, and
custom scripts that support the development, testing, and evalu-
ation of SDN solutions, without the constraints and expenses of
multi-site physical infrastructures; furthermore, the chosen solu-
tions can be directly transferred to production deployments. By
complementing VSNE with a physical testbed, we conduct targeted
performance tests of various SDN solutions to help choose the best
candidates. In addition, we propose a switching response method
to assess the setup times and throughput performances of different
SDN solutions, and present experimental results that show their
advantages and limitations.
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1 INTRODUCTION
Today’s science infrastructures consist of several scientific instru-
ments, supercomputers, storage/file systems, and custom visualiza-
tion facilities [5], which are located at geographically dispersed sites.
These sites are typically connected over a combination of shared
and dedicated high-performance networks. The scientific work-
flows span these distributed facilities, and their executions require
a small number of high-performance network flows among various
remote sites for specific time periods. These network flows in turn
require dedicated high-capacity, low-latency, and/or low-jitter con-
nections among the sites. Currently, such network connections are
composed and configured manually by site andWide-Area Network
(WAN) operators, with typical lead times of days or even longer.

Recent advancements in Software-Defined Network (SDN) solu-
tions [8, 18] promise fast and automatic provisioning within sec-
onds. We present SDN solutions to set up these connections using
a network of site daemons operating on a control plane over the
shared network. They utilize custom scripts and controllers to coor-
dinate the path setup and teardown operations over the dedicated
high-performance data plane. Once a connection request is received
from the users or automated scripts, a site daemon translates and
communicates the request to other site daemons and the WAN
daemon. Then, these connection requests are translated into com-
mands for setting up the site network elements and sent to the site
controller, which then installs suitable flow entries on site switches.
These solutions utilize custom dpctl scripts [10], OpenDaylight
(ODL) [3], Floodlight [1], or ONOS [2] controllers to maintain net-
work connections by inserting, modifying, and deleting flow entries
on OpenFlow devices.

The development, testing, and evaluation of these SDN solutions
over science network infrastructures are extremely challenging
because they require: (i) close coordination and allocation of infras-
tructures at multiple sites, (ii) potential infrastructure disruptions
during the initial testing of SDN codes, and (iii) long testing pe-
riods to assess solution choices from a large number of possible
combinations of SDN devices and controllers, during which the
infrastructure is unavailable to the regular users. To overcome these
challenges, in this paper, we develop a Virtual Science Network En-
vironment (VSNE), wherein various sites and WAN configurations
are emulated using Virtual Machines (VMs), and their sub-networks
are emulated using Mininet within VMs. Building on this VSNE, we
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implement our SDN solutions to set up the dedicated connections
using a network of site daemons. Thus, VSNE enables the develop-
ment and testing of SDN solutions, including highly disruptive ones,
while the physical infrastructure is being built, and it does not re-
quire multi-site physical infrastructure allocation and coordination.
In particular, our VSNE emulates the infrastructure that is currently
being built among four national laboratories, namely, Argonne Na-
tional Laboratory (ANL), Brookhaven National Laboratory (BNL),
Los Alamos National Laboratory (LANL), and Oak Ridge National
Laboratory (ORNL). VSNE runs on a workstation and is replicated
at all four sites so that their respective SDN site-solutions can be
tested and synchronized, and upon maturity, can be rolled into the
respective site physical infrastructure.

In addition to SDN functionality testing, VSNE also supports
certain performance tests, for example, to assess path setup and
teardown times of controllers, and to help choose among the solu-
tions. However, due to the underlying Mininet emulations, VSNE is
subject to bandwidth constraints that limit our performance studies
to smaller connection capacities. Hence, we develop a complemen-
tary physical testbed to conduct throughput tests. We collect ping
and Transmission Control Protocol (TCP) throughput time traces
using both VSNE connections and physical 10GigE connections to
assess the responsiveness of SDN solutions for connection setup and
teardown operations. The ping measurements capture the connec-
tion setup and teardown times in both cases. However, somewhat
unexpectedly, TCP dynamics over VSNE connections deviate signif-
icantly from those on physical connections, and hence we use the
latter in throughput tests. Our measurements from targeted tests
provide valuable insights into the strengths and limitations of dif-
ferent SDN solutions. For example, using HP 5604zl switches, under
legacy OpenFlow 1.0, dpctl scripts provide faster responses than
ODL Hydrogen controllers by over a second; but under OpenFlow
1.3, their performances are comparable to those using Floodlight
and ONOS controllers.

Individual SDN solutions composed of switches, together with
controllers and their corresponding custom northbound codes, can
be quite varied, e.g., HP switches with dpctl scripts and Cisco
switches with ODL controllers. To objectively compare the per-
formances of disparate SDN solutions, we propose the switching
response method. In general, SDN solutions can be composed by
choosing from a wide variety of controller and device combinations;
they may include open-source and vendor-specific SDN controllers,
along with different OpenFlow implementations by device vendors,
ranging from building additional software layers on existing prod-
ucts to developing completely native implementations. An ideal
response to a connection setup request would be an immediate
ping return and an instantaneous TCP throughput maximization.
However, in practice, the responses lag and may contain complex
transients that depend on site daemons, controllers, and network
devices. The switching response method enables us to quantify
the performance of SDN solutions using responses to a train of
connection setup and teardown events, and objectively compare
and choose suitable candidates for a given infrastructure.

The organization of this paper is as follows. In Section 2, we
briefly describe scientific workflows to motivate the needed SDN
solutions, and then present a daemon-based SDN solution. Details
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Figure 1: SDN solution using interconnected site daemons.

of VSNE and physical testbed are presented in Section 3. The mea-
surement analysis and switching response method are described in
Section 4. The paper concludes in Section 5.

2 SDN SOLUTIONS FOR SCIENTIFIC
WORKFLOWS

Effective implementations of network connections for scientific
workflows are critical to successful collaborations among researchers
in many disciplines [5]. At present, custom-designed Local Area
Network (LAN) and WAN connections are provisioned manually
by different network engineer teams, often requiring days. Fur-
thermore, valuable resources are often over-provisioned to meet
peak transient needs. Recent developments in SDN, network func-
tion virtualization (NFV), and related technologies [8, 9] hold an
enormous promise for fast automatic provisioning of network con-
nections. However, the science network flows represent a different
set of challenges compared to data center environments, which
have been mainly targeted by many rapidly developing SDN tech-
nologies. The adoption and deployment of these technologies have
been somewhat slow in science networks due to operational and
security considerations [14]. One predominant feature of science
network flows is that a small number of them originate from known
sites, and they involve high-volume and high-precision flows over
multi-domain WAN, LAN, and storage area networks. In terms of
network infrastructures, science environments provide two types
of services: (i) a default IP network to support user login and other
services, and (ii) dedicated high-bandwidth data connections either
on demand or through advance reservation.

2.1 Site-Service Daemon Framework
For the science scenarios considered here, a single controller solu-
tion is not effective, although such approaches with stable control-
plane connections have been effective in path/flow switching over
local area networks using OpenFlow [13, 15] and cross-country
networks using customized methods [11, 12]. In our SDN solution,
a set of site daemons provide basic connectivity among the sites over
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Figure 2: Illustration of path setup between two sites.

the default IP network. These site daemons maintain persistent con-
nectivity among themselves and also with the local site controllers,
switches, and science users, as shown in Figure 1. At each site, the
local daemon receives connection requests (setup/teardown) from
either local users, or automated workflow agents, or remote site
daemons. Then, in response, the local daemon performs two tasks:
(i) invokes custom scripts to setup or teardown connections within
the site by interacting with the site controllers and switches, and
(ii) generates specifications for WAN and remote site connections,
and communicates them to WAN and remote site daemons. We
show an example of two-site path setup in Figure 2.

2.2 Controllers
We consider two types of site/WAN controllers using dpctl scripts
and one of the open-source controllers, namely, ODL, Floodlight,
and ONOS, as described in the following.

2.2.1 dpctl Controller. Some vendors support dpctl API, as part
of OpenFlow implementation, which enables hosts to communi-
cate with switches to insert new flows, query the status of flows,
and delete existing flows. We utilize custom dpctl controller scripts
for flow setup and teardown by directly communicating with the
switches. The execution path of this code is very simple as it in-
volves direct communications with the switch, as shown in Fig-
ure 3(a). A similar solution was developed to support an automatic
fail-over of long-haul connections in [10].

2.2.2 Open-Source Controllers. The SDN controllers, including
ODL, Floodlight, and ONOS, communicate with OpenFlow switches
to install, query, and delete flow entries on their southbound inter-
face. The site-service daemon communicates with site controllers
via the northbound interface. Specifically, we use curl or Python
scripts to communicate flow setup and teardown operations to the
controller via REST interfaces, as illustrated in Figure 3(b); the con-
tents of these flow entries are identical to the ones used in the above
dpctl controller solution. However, compared to dpctl scripts, these
controller codes are much more complex to analyze, because they
involve not only the REST scripts but also the controller software
stack which by itself is fairly complex. Thus, both the software and
execution paths are much more complicated compared to the dpctl
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Figure 3: Configurations of dpctl and controllers in physical
testbed.

method, and these controllers are also required to run constantly
on the servers at end sites.

3 EXPERIMENTAL AND VIRTUAL
DEVELOPMENT AND TEST ENVIRONMENT

In this section, we describe VSNE and testbed hardware used for
evaluating various SDN solutions. In particular, the VSNE is primar-
ily used for code development and functionality testing, whereas
the testbed is used in targeted tests for complementary performance
assessment, more specifically, without being constrained by the
capacity limits and non-representative TCP dynamics of VSNE
connections.

3.1 Virtual Science Network Environment
We develop a VSNE with five VMs, four of which emulate the
sites, ANL, BNL, LANL, and ORNL, and a fifth one emulates the
dedicated ESnet [7] WAN connections among these sites, as shown
in Figure 4; the overall framework is general and can emulate multi-
site networked infrastructures. The VMs run under VirtualBox
5.1 environment on a Linux host with RHEL 7.2 kernel. For each
site VM, two internal interfaces are enabled, one for control-plane
communications among all site daemon codes, and the other for
dedicated data-plane connections between site VMs and WAN VM.
The former emulates the persistent network over default WAN
among site daemons shown in Figure 1, and is implemented using
internal networking feature of VirtualBox VMs, which supports
communications between processes running within all VMs on a
host.

Figure 5 illustrates the configuration of a site VM. Using Python
scripts running in the Mininet environment, we create two hosts h1
and h2 that are connected to a switch s2, which is in turn connected
to another switch s1. Both s1 and s2 are Open vSwitches whose
flows can be dynamically configured as needed. These switches in
our VSNE framework represent the deployed OpenFlow hardware
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Figure 5: Site VM configuration with two hosts and two
switches.

switches, and in particular, they support both dpctl and various con-
trollers so that VSNE codes can be transferred to physical networks.
Also shown in Figure 5 are a site daemon and an SDN controller.
The connections among Mininet switches and hosts constitute the
data-plane, and the northbound connections between site daemons
and SDN controller and southbound connections between the con-
troller and switches constitute the control plane. In the case of
dpctl scripts, the site daemons directly control the switches via the
control-plane connections.
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Figure 6: WAN VM configuration for four sites.

Table 1: Configurations of long-haul link latency on WAN
VM

Link Latency (ms)
ANL–BNL 24
ANL–LANL 80
ANL–ORNL 13
BNL–LANL 90
BNL–ORNL 48
LANL–ORNL 80

On the WAN VM, four “gateway” Open vSwitches are created
in Mininet and the links between these switches emulate the long-
haul physical connections, such as OSCARS [4] circuits between the
sites. Figure 6 illustrates both the data-plane connections among the
switches and to WAN, and the control-plane connections between
controllers and/or the WAN daemon. We emulate long-haul link
latency between the site-pairs in the Mininet environment using de-
lay parameters shown in Table 1. A simple rate control mechanism
is also implemented in the same script where the maximum band-
width of the links is set to be 20 Mbps. The site configurations and
connections to WAN for a multi-site infrastructure are illustrated
in Figure 7.

The switching response method to be described in Section 4
entails flow insertion and deletion on the switches. We run connec-
tivity tests using the command ovs-ofctl, considered as a specific
version of the dpctl method for Open vSwitches. In particular, the
add-flow and del-flows methods are respectively used to add and
delete flows on a particular switch. Alternatively, we dynamically
add or delete flows using curl scripts while the SDN controller
(ODL, Floodlight, or ONOS) is running. Once all flows are added,
we run ping to test the connectivity and the RTT, where ICMP
packets are exchanged between end hosts. On the other hand, we
run TCP iperf on end hosts to test the instantaneous transfer rates
between the host pair. A first version of VSNE spanning the four
laboratory sites has been implemented and replicated at the sites,
and functionality tests have been carried out.

3.2 OpenFlow Testbed
An experimental testbed is set up for targeted performance tests
and early code transition from VSNE, which consists of two site
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LANs, each with multiple hosts connected via 10GigE NICs to the
site’s border switch. The testbed, as shown in Figure 8 for dpctl
and ODL options, is a network connection-level representation of
the physical infrastructure spanning ANL, BNL, LANL, and ORNL.
The border switches are connected to one another via local fiber
connection of a few meters in length and ANUE devices that em-
ulate long-haul connections in hardware. Tests are performed in
configurations that use pairs of HP 5064zl as border switches, which
are OpenFlow-enabled and support dpctl.

Two classes of Linux hosts are connected to border switches. The
controller hosts (e.g., “feynman 1” and “feynman 2”) are utilized to
run ODL/ONOS/Floodlight controllers, and client and server hosts
(e.g., “feynman 3” and “feynman 4”) are used to execute site modules
along with client server codes, for example, iperf clients and servers.
The dpctl tests utilize only client and server hosts to execute both
monitoring and site/WAN daemon codes. For ODL tests shown in
Figure 8(b), site codes on client/server hosts utilize REST interfaces
of controllers to communicate flowmessages needed for connection
setup and teardown operations. We employ open source controllers
running on controller hosts and site daemon modules running on
server/client hosts.

4 SWITCHING RESPONSE METHOD
We characterize the performance of an SDN solution by its ping and
TCP throughput responses to periodic “switching” events that trig-
ger flow manipulations on the switches, namely, insertion and/or
deletion of flow entries. Each event under a network configura-
tion X engages: (i) software components including SDN controllers,
northbound scripts, and site daemons, and (ii) hardware compo-
nents including switches, connections, and host systems. We pro-
pose the switching responsemethod that utilizes averages from ping
and/or TCP throughput traces collected under a switching sequence,
wherein the connection is periodically switched at the beginning
of a fixed interval period T , and after duration TD < T .

4.1 TCP and ping Measurements
We apply two different switching sequences for performance tests;
we primarily focus on ping for VSNE due to its limitations on TCP
dynamics as described below. For VSNE, the switching sequence
corresponds to periodic datapath setup and teardown as shown in
Figure 9(a), along with expected ping and iperf responses shown in
Figures 9(b) and 9(c) respectively. For illustration purposes and also
to unify the analysis of TCP and ping measurements, ping values
under a torn-down connection are shown as small negative values
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Figure 8: Test configurations for dpctl and ODL SDN solutions.

close to zero. For the testbed, we additionally consider switching
between a direct fiber connection with 0 ms RTT and an emulated
connection with 20 ms RTT (which would have yielded somewhat
of a “flipped” version of the ideal ping response in Figure 9(b)). In
all cases, the ping response is fairly fast, resulting in rectangular-
shaped responses shown in Figure 9(b). On the other hand, TCP
throughput reacts somewhat slower to connection changes as it
recovers, leading to trapezoidal-shaped responses abstracted in
Figure 9(c).

4.1.1 Testbed Measurements. Two sets of experiments are run
using the testbed configuration as shown in Figure 8. The first set
utilizes OpenFlow 1.0, and the traces alternate between 50 sec local-
connection periods and 10 sec no-connection periods as shown in
Figure 10. For both dpctl and ODL Hydrogen methods, the through-
put quickly reaches the connection capacity for the local connection
and drops to zero upon teardown. However, the average recovery
time for ODL is about one second slower (see Figure 11), and these
results are consistent with similar results discussed in [10].

The second set of experiments use OpenFlow 1.3 with dpctl
and Floodlight/ONOS controllers, where the paths are switched

between 0 ms and 20 ms connections. Table 2 displays time epochs
that correspond to the change-points in the 500 sec TCP iperf traces
(in 0.1 sec resolution) in response to path setup and teardown events
scheduled at 50 sec intervals, and Figure 12 shows two sample traces
of the switching response with Floodlight. The peak throughput is
lower than in previous experiments because of the different con-
nection configuration and default TCP buffers. Interestingly, the
advantage of dpctl’s faster response disappears in these tests. A
closer examination reveals that the performance differences be-
tween controllers and dpctl method are less obvious, i.e., within
1 sec on average; however, the effect of response lag here is cu-
mulative in that the lag increases over time as the test continues.
As shown in Table 2, compared to the response times in the “1st
0ms” column, where the data-path connection is set up for the first
time, four cycles later, the values in the “5th 0ms” column exhibit
variable increases in response time: 0.5 sec for Floodlight, 1 sec for
ONOS, and 1.5 sec for dpctl. The average differences among the
response times are within 1 sec over the five periods.

These targeted tests highlight the performance differences in
OpenFlow versions, and also reflect certain practical aspects. For
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OpenFlow 1.3, HP switches employ a more complex implementa-
tion and flow table structure compared to OpenFlow 1.0, and dpctl
code base is also re-written. Their combined effects contribute to
the somewhat slower response of the dpctl method. The Open-
Flow 1.0 results are still of interest as it remains in use at some
sites, while the transition to OpenFlow 1.3 is being evaluated from
operations and security perspectives. Even in our more flexible
testbed environment, this transition has been time-consuming, as
it involves re-writing of dpctl scripts and customization of Flood-
light and ONOS southbound interfaces to match the upgraded HP
switches.

4.1.2 VSNE Measurements. We collected switching responses
for ODL Beryllium, Floodlight, and ONOS controllers over VSNE.
Here we present the results for ODL since statistically the others
are quite similar. Each test run comprises of 5 flow-event periods
with T = 30 sec and TD = 20 sec. The site daemon code is invoked
periodically by the sender site VM that connects a local virtual host
to a remote virtual host located on another site VM. In contrast
to testbed TCP throughput traces shown in Figure 10, the switch-
ing responses here exhibit significant delay and variations across
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Figure 11: Testbed iperf switching response regression run-
ning OpenFlow 1.0.
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repeated test runs, as shown in Figure 13 for the ANL-ORNL con-
nection. The throughput recovery time after the flows are restored
is at least 6 sec in this case, and it is not uncommon to encounter
10 sec or longer lag times. In addition, although the link capacity
(20 Mbps) is eventually reached, the throughput traces exhibit sig-
nificant instability, reflected by a large proportion of throughput
rates in 10-15 Mbps range, especially for the ovs-ofctl configuration.
We conjecture that such out-of-sync phenomena for TCP packets
are the combined effect of complex TCP dynamics and limitations
of Open vSwitches (under OpenFlow 1.3) in Mininet emulation en-
vironment. On the other hand, ICMP packets used by ping have less
complex dynamics, as reflected in much more well-behaved traces,
and provide insights into the switching performance as shown next.



Table 2: TCP switching response time epochs (in seconds) in hardware testbed running OpenFlow 1.3

Options 1st 0ms 1st 20ms 2nd 0ms 2nd 20ms 3rd 0ms 3rd 20ms 4th 0ms 4th 20ms 5th 0ms
dpctl 50.4 100.4 150.8 200.8 251.2 301.2 351.6 401.6 451.9

Floodlight 50.3 100.2 150.4 200.3 250.5 300.4 350.7 400.6 450.8
ONOS 50.3 100.2 150.6 200.5 250.8 300.8 351.1 401.0 451.3
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Figure 14: Select virtual connection ping switching response and regression.

Table 3: Ping switching response and packet delivery perfor-
mance over virtual connections

Link Response Time (s) Packet loss rate
ovs-ofctl ODL ovs-ofctl ODL

ANL–BNL 0.500 1.100 31.25% 32.89%
ANL–LANL 0.500 1.150 31.33% 33.28%
ANL–ORNL 0.550 1.275 31.33% 33.59%
BNL–LANL 0.650 1.225 31.56% 33.75%
BNL–ORNL 0.500 1.225 31.25% 33.52%
LANL–ORNL 0.600 1.250 31.48% 33.67%

In Figure 14, the average switching responses, represented by
the 160 sec ping trace plots (with the interval set to be 0.5 sec), and
the response regression plots for a single 30 sec cycle, are shown
for select site pair connections (a small negative number, shown as
zero here, represent the torn-down connection RTT). In particular,
from the regression plots, one can observe: (i) the trailing edge of
the ovs-ofctl response curve, as when the flows are deleted, largely
coincides with that of ODL; and (ii) the leading edge of the ovs-ofctl
curve, shortly after the flows are added, precedes that of the ODL
curve, demonstrating the shorter response time of the former.

The response delays listed in Table 3 indicate that it takes over
1 sec to recover using ODL, more than twice the amount of time
with the ovs-ofctl option for most scenarios. The overall longer
response time with ODL is also reflected in the aggregated packet
loss rates over the 160 sec period as shown in Table 3, where over
2% of all the packets are additionally lost using ODL (compared to
ovs-ofctl) because of the relatively slower response after the flows
are restored.

4.2 Response Regression Function and Finite
Sample Analysis

We provide an analytical justification for the conclusions reached
in the previous subsection based on the responses averaged over
T sec switching cycles. The main consideration is that both TCP
throughput and ping estimates are overall monotone functions of
time around the switching events, although they vary in opposite di-
rections. When the current connection is switched to a shorter one,
the ping estimate decreases quite rapidly whereas TCP throughput
increases overall but could exhibit complex dynamics, for exam-
ple, as shown in Figure 12. We utilize this underlying monotonicity
property to justify our earlier conclusions by adapting the statistical
method developed for long-haul connection fail-over scenarios in
[10]. Such an analytical justification is important in view of various



hardware and software factors that contribute to complex measured
traces.

A configuration X is specified by its software consisting of
SDN controllers and northbound scripts, orchestrator modules,
and hardware consisting of switches, routers, and host systems. Let
δ (t − iT ), i = 0, 1, . . . ,n denote the sequence of connection setup
and teardown commands, where t represents time and T is the
period. Let TX (t) denote the parameter of interest at time t , namely,
TCP throughput or RTT estimates returned by ping as shown in
Figures 10, 13, and 14, respectively. Let RX (t) = B − TX (t) denote
the parameter trace that captures the “unused” portion of the peak
parameter value B. For TCP traces over a connection with capacity
B, it is the residual bandwidth at time t above TCP throughput
TX (t). For data transfers, the desirable TCP response is to achieve
throughput close to B during the [0,TD ] interval in each period T .
To unify the analysis of ping and TCP throughput measurements,
we denote the RTT over a torn-down connection by a small nega-
tive number (shown as zero in Figure 14), and let B represent the
RTT of the connection that has been set up. The parameter trace
is close to zero when throughput is close to the peak or when the
RTT estimate is accurate, and close to B during the [TD ,T ] portion
of each cycle.

We define the setup response function as

RXi (t) = RX (t − iT ), t ∈ [0,TD )
which is the response to the ith setup δ (t − iT ), for i = 0, 1, . . . ,n. A
response function is an impulse function that represents the instan-
taneous path setup and ping/TCP throughput recovery. As seen in
measured traces, RXi (t) is a somewhat “flattened” impulse function
with significant statistical variations; in general, the narrower this
function, the quicker the setup.

The response regression of configuration X is defined as

R̄X (t) = E
[
RXi (t)

]
=

∫
RXi (t)dPRXi (t ),

for t ∈ [0,TD ]. The underlying distribution PRXi (t ) is in general
quite complex since it depends on the dynamics of controllers and
TCP or ping mechanisms. In general, we assume that it exhibits an
overall decreasing profile for t ∈ [0,TD ]. For example, following the
teardown period [TD ,T ], TCP throughput increases as it recovers
from zero. For ping measurements, the transition is sharper as it
becomes RTT B at t = 0 and drops to 0 when ping returns an
accurate RTT estimate. The duration in which it stays near B is a
measure of the time needed for the flows to be installed.

We define the response mean R̂i (t) of R̄i (t) using the discrete
measurements collected at times t = jδ , j = 0, 1, ...,T /δ , as

R̂X (jδ ) = 1
n

n∑
i=1

(
RXi (jδ )

)
which captures the average profile. Based on the mean differences
in TCP traces for physical connection in Figure 10, the dpctl method
responds about a second faster than the ODLmethod. A similar rela-
tionship can be drawn from the ping traces collected over emulated
VSNE connections in Figure 14; but, the VSNE TCP traces, such as
those shown in Figure 13, are less conclusive, thereby indicating
limitations of VSNE for more complicated TCP dynamics. From
an engineering perspective, the above performance comparisons

based on the measurements seem intuitively justified, and in the
next subsection, we provide a statistical justification for the use of
response mean R̂(t) by exploiting the underlying monotonic prop-
erties of the performance parameter, namely, the recovery of ping
or TCP throughput following a connection setup. The derivation
is a special case of a more general result presented in [10], and we
provide these details for completeness.

4.3 Finite Sample Statistical Analysis
A generic empirical estimate R̃X (t) of R̄(t) based on discrete mea-
surements collected at times t = jδ , j = 0, 1, ...,TD/δ , is given
by

R̃X (jδ ) = 1
n

n∑
i=1

[
д
(
RXi (jδ )

)]
for an estimator functionд from function classM of non-decreasing,
namely, monotone functions. For ease of notation, we also denote
R̃X (.) by f ∈ M. The expected error I (f ) of the estimator f is given
by

I (f ) =
∫

[f (t) − RXi (t)]2dPRXi (t ),t .

The best expected estimator f ∗ ∈ M minimizes the expected
error I (.); that is, I (f ∗) = minf ∈M I (f ). The empirical error of an
estimator f is given by

Î (f ) = δ

TDn

n∑
i=1

T /δ∑
j=1

[
f (jδ ) −

(
RXi (jδ )

)]2
.

The best empirical estimator f̂ ∈ M minimizes the empirical error
Î (.); that is, Î ( f̂ ) = minf ∈M Î (f ). Since the response mean R̂(t) is
the mean at each observation time jδ , it achieves zero mean error,
which in turn leads to zero empirical error, i.e., Î

(
R̂
)
= 0; thus, it

is the best empirical estimator. By ignoring minor variations, R̂ is
closely approximated as a non-decreasing function, as indicated
by the response means of dpctl and ODL methods, as shown in
Figure 14 for ping measurements, and in Figures 10 and 13 for TCP
throughput traces respectively.

In what follows, we will show that the response mean R̂(t) is a
good approximation of the response regression R̄(t) as indicated
by the Vapnik-Chervonenkis theory [16]. Furthermore, this per-
formance guarantee is distribution-free, i.e., independent of the
underlying joint distributions of controllers and switches, and is
valid under very general conditions [17] on the variations of perfor-
mance parameter (such as TCP throughput or ping RTT estimate)
measurements. We emphasize that the underlying distributions are
quite complicated and generally unknown, since they depend on
complex interactions between controller software and switches.

First, we show that the error of estimator R̂, given by I
(
R̂
)
, is

within ϵ of the optimal error I (f ∗) with a probability that improves
with the number of observations n. In particular, the probability

P
{
I
(
R̂
)
− I (f ∗) > ϵ

}
decreases with n, independent of the distributions of the controllers,
switches, and orchestrator modules. In the first step, the uniform



convergence property of the expected and empirical errors over
the function class M shows that

P
{
I
(
R̂
)
− I (f ∗) > ϵ

}
≤ P

{
max
h∈M

|I (h) − Î (h)| > ϵ/2
}

Then, by applying the uniform bound ([6], p. 143) provided by
Vapnik-Chervonenkis theory, we obtain

P
{
I
(
R̂
)
− I (f ∗) > ϵ

}
≤ 16N∞

( ϵ
B
,M

)
ne−ϵ

2n/(4B)2

where N∞ (ϵ,A) is the ϵ-cover size of function class A under L∞
norm. The ϵ-cover size is a deterministic quantity that depends
entirely on the function class, which in turn makes the above prob-
ability bounds distribution-free in that they are valid for any joint
distribution of controllers, switches, and orchestrator modules at
various sites.

Next, the monotonicity of functions inM establishes that their
total variation is upper-bounded by B. This property in turn pro-
vides the following upper bound for the ϵ-cover size of M [6]:

N∞
( ϵ
B
,M

)
< 2

( n
ϵ2

)(1+B/ϵ ) log2(4ϵ/B)
.

By using this bound, we obtain

P
{
I
(
R̂i
)
− I (f ∗) > ϵ

}
< 32

( n
ϵ2

)(1+B/ϵ ) log2(4ϵ/B)
ne−ϵ

2n/(2B)2 .

This bound provides qualitative insights into this approach when a
“sufficient” number of measurements are available. The exponential
term on the right-hand side decays faster in n than the growth
in other terms, and hence for sufficiently large n it can be made
smaller than a given probability α . Thus, the expected error I (R̂) of
the response mean used in the previous subsection is within ϵ of
the optimal error I (f ∗) with a probability that increases with the
number of observations. Furthermore, this performance guarantee
is distribution-free, i.e., independent of the underlying joint distri-
butions of controllers and switches, and is valid under very general
conditions [17] on the variations of TCP throughput or ping RTT
estimates.

5 CONCLUSIONS
We presented SDN solutions to set up dedicated connections needed
for multi-site high-performance scientific workflows. They utilize
site-service daemons to coordinate these connections, using dpctl,
ODL, Floodlight, or ONOS controllers. The VSNE consisting of
VMs, Mininet, and custom scripts emulates various network envi-
ronments and supports the development and testing of SDN solu-
tions while the multi-site physical infrastructure is being built. We
proposed the switching response method to assess the connection
setup performance of these SDN solutions. The SDN solutions are
directly transferable to physical networks, but the performance
test results require complementing VSNE with a physical testbed.

While ping measurements are consistent, TCP traces show signifi-
cant differences between the emulated and physical connections.
Targeted tests using both VSNE and physical testbed provide in-
sights into the performance of various SDN controllers, devices,
and technologies.

It would be of future interest to investigate the correlations
between TCP dynamics observed in physical and Mininet environ-
ments. More generally, it would be useful to gain further insights
into the limitations of VSNE performance tests. Future work may
also include the development of a baseline test harness for science
environments wherein a controller or a switch can be plugged into
a known, fixed science configuration to assess the performance. In
particular, the switching responses can be generated for different
combinations of controllers, switches, and other SDN components
under various configurations to objectively evaluate their relative
performances.
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